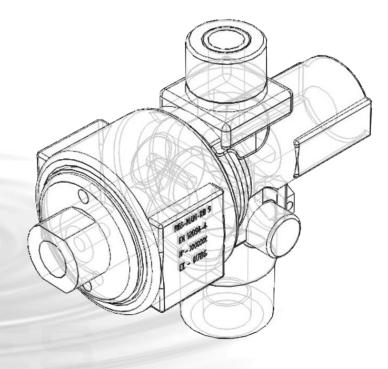
50 YEARS PROTECTING LIVES AND PROPERTY

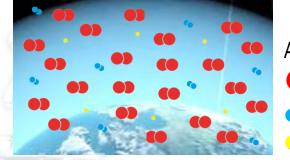
CONSTANT FLOW TECHNOLOGY™ Overview

23/Nov/15


INDEX

I. Use of inert gases

- Why to use
- Inert-based firefighting systems
- II. Constant flow technologies
 - Inert-Siex[™] CFT
 - Comparison
 - Advantages


III. Conclusions

WHY TO USE INERT GASES?

 Excellent fire fighting effectiveness

Atmosphere: 78% N₂ 21% O₂ 1% Others

The only <u>truly ecologic</u> gas:

zero negative effects

	Halon 1310	HFC-23	HFC-227ea	Novec	Inert gases
Ozone Depletion Potential (ODP)	10	0	0	?	0
Greenhouse Warming Potential (GWP)	6.900	14.800	3.800	?	0
Atmospheric lifetime	65	243	36,5	?	n/a

WHY TO USE INERT GASES?

✓ Best value agent

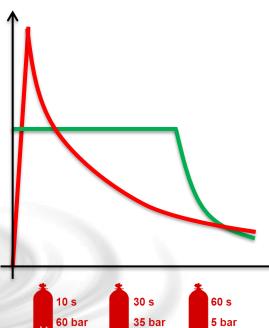
- Up to 10 times less expensive (chemical gases)
- 99,99% pure, dry and cheap inert gas stored in cylinders
- Low maintenance and recharge costs
- Long distance capacity
 - 120 200 m (130 220 yd)
 - Multiple protections with one bank (selector valves)

✓ More compact hardware

WHY TO USE 300 BAR?

More cost efficient Less space consumed

IMPACT OF STANDARD INERT SYSTEMS


Restrictor regulation

- Fixed calibration (hydraulic calculation)
- As storage pressure drops so does outlet pressure
- \rightarrow Not efficient pattern
- \rightarrow Pipework sized to a high but brief pressure

Constant Flow Technology

- Fixed outlet pressure, adjustable opening
- As storage pressure drops, outlet area increases
- \rightarrow Very efficient pattern
- \rightarrow Pipework sized to a lower and constant pressure

25%

30 s

50 bar

50%

60%

10 s

50 bar

84%

How does this election affect systems?

Restrictor

- Everything is sized to a big but brief pressure:
 - » Larger diameters
 - » More resistant pipes: SCH160/80, thicker, heavier, more expensive
 - » Larger venting areas

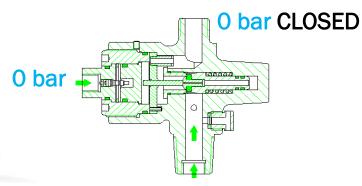
Constant Flow technologies

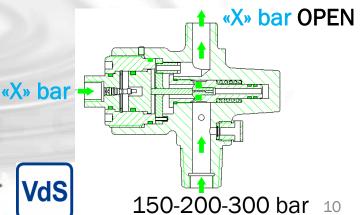
- Rational and optimized design
- sized to a lower and constant pressure:
 - » Smaller diameters: 1/2" less, so costs go down
 - » Less resistant pipes: SCH40, lighter, manageable, cheaper
 - » Venting areas reduced
 - » Less noisy discharges

Do all constant flow valves work the same?

NO, our pneumatic regulation system has a much better performance

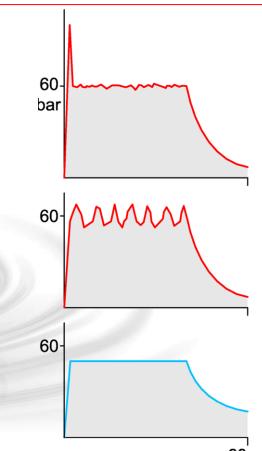
	SIEX CFT	Others
Regulation	PneumaticStatic equilibrium	MechanicalDynamic equilibrium
Pros	 No variations in flow Consistent behaviour Customized discharge pressure 	
Cons		Pressure and flow varyNon-predictable behaviour


CONSTANT FLOW TECHNOLOGIES


• Siex valve, model RD

- Static equilibrium
 - » Chambers not communicated
- Pneumatic regulation via cartridge
 - » Outlet pressure = Cartridge x factor
 - » HIGHER FLOW RATIO
 - Pneumatic regulation, gas behaves always in the same way
 - » No extra costs (calibration)
 - Eliminates drawbacks from restrictor systems

150-200-300 bar



CONSTANT FLOW TECHNOLOGIES

- Competitor 1: Dynamic equilibrium
 - Low flow rate
 - Peak at 100 bar, then quite constant
 - Based on springs: each valve works different
- Competitor 2: Dynamic equilibrium
 - Upper chamber fills and empties → irregular
 - Spring performance not tested in a long run
 - Safety risks when closed pipe sections

SIEX CFT[™]: Static equilibrium

- Consistent and reliable pattern
- Adjustable output pressure
- Safety: outlet pressure never exceeds cartridge's


CONSTANT FLOW TECHNOLOGIES

	SIEX CFT	Competitor 1	Competitor 2
Equilibrium	- Static: no variations	- Dynamic: peak (100bar)	- Dynamic: huge variations
Eq. mech.	- Nitrogen cartridge - Sealed regulation chamber	- Mechanic: spring - Connected chambers	- Mechanic: spring - Fluctuating chambers
Discharge pressure	 ANY. Easily readjustable Independent from storage; cyl. does not affect discharge equilibrium. 	 Fixed: 300bar→ 60bar 200bar→ 40bar Cylinder affects equilibrium 	 Fixed: 300bar→ 60bar 200bar→ 40bar Cylinder affects equilibrium
Reliability	- CONSISTENCY, the only valve that warrants identical behavior	- Springs not calibrated - Each works DIFFERENT	- Springs not calibrated - Each works DIFFERENT
Safety	- Stabilizes at 60bar in case of blocked output	- No accidental discharges (cup off)	- Uncontrolled discharge if outlet is blocked: 300bar
	 Upper outlet Whole system approvals UL, FM (hardw. & softw.) 	- Side outlet	- Side outlet

- UL / FM approvals
 - Better systems behaviour: Lower design concentrations: -5% to -10%
 - Additional components also approved: safety, control, etc.
- Combi Manifold (CMS[™])
 - Lighter, manageable
 - Pressure losses reduction
 - Meccano configuration: extreme flexibility
- Others
 - Upper valve output: Installation flexibility

CONCLUSIONS

SUMMARY OF ADVANTAGES

INSTALLATION

- ✓ CHEAPER installation costs
- ✓ Smaller piping
- ✓ FLEXIBLE installation

APPROVALS

- ✓ UL listed
- ✓ FM approved
- ✓ VdS approved
- ✓ COMPLETE range of approved products

ECOLOGY

 The most ENVIRONMENTALLY FRIENDLY gas
 Materials REDUCTION
 The best ALTERNATIVE for the future ▼ THE SAFEST technology
 ✓ CONSISTENT warranted behaviour

QUESTIONS?

Thank you for your time